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1. Introduction
Particle populations in collisionless space plasma environments,
such as the Earth’s magnetotail, are traditionally characterised
by the moments of their distribution functions. Distribution
functions, however, provide the full picture of the state of each
plasma environment, especially when non-thermal particle
populations are present that are less easily characterised by a
Maxwellian fit.
Distribution functions, unlike moments, are not easily classified
by a small number of parameters. We therefore propose to apply
dimensionality reduction and clustering methods to particle
distributions in pitch angle and energy space as a new method
to distinguish between the different plasma regions. With these
novel methods, we robustly classify variations in particle
populations to a high temporal and spatial resolution, allowing us
to better identify the physical processes governing particle
populations in near-Earth space.

2. Machine Learning Models
In unsupervised learning, algorithms discover the internal
representations of the input data without requiring training on
example output data. Dimensionality reduction is a specific type
of unsupervised learning in which data in high-dimensional
space is transformed to a meaningful representation in lower
dimensional space. This transformation allows complex datasets
to be characterised by analysis techniques with much more
computational efficiency.
We use the autoencoder to compress the data by a factor of 10
from a high-dimensional representation. We subsequently apply
the PCA algorithm to further compress the data to a three-
dimensional representation. The PCA algorithm has the
advantage of being a lot cheaper computationally than an
autoencoder, however the algorithm only captures variations that
emerge from linear relationships in the data. After compressing
the data, we use the mean shift algorithm to inform us of how
many populations are present in the data using this three-
dimensional representation. And finally, we use an
agglomerative clustering algorithm to assign each data-point to
one of the populations.



3. Autoencoders
Autoencoders are type of neural
networks. They learn compressed
representations of data by using a
bottleneck layer which maps the
input data to a lower dimensional
space, and then subsequently
reconstructing the original input. By
minimising the `reconstruction error',
or `loss', the autoencoder retains the
most important information in a
representative compression and
reconstruction of the data.
Each neuron computes the following
sum:

𝑦 = ∑$ 𝑤$𝑥$ + 𝑏, (1)
where wi denotes the weights of
each neuron, xi the input from the
previous layer, and b the bias term.
The autoencoder adjusts the
weights and biases to minimise the
reconstruction loss.

4. Principal Component Analysis
A PCA algorithm reduces the dimensionality of input data by
transforming this data from a large number of correlated
variables to a smaller number of uncorrelated variables, known
as principal components. This is achieved by calculating the
covariance matrix associated with the input data, and extracting
the eigenvectors.

5. Mean Shift
The mean shift algorithm is a clustering technique that locates
the maxima of a density function in a sample space. The
algorithm does not require prior knowledge of the number of
clusters.

6. Agglomerative Clustering
Agglomerative clustering is a type of hierarchical clustering that
uses a ‘bottom-up’ approach, whereby each data-point is first
assigned a different cluster. Then pairs of similar clusters are
merged until the specified number of clusters has been reached.
During each recursive step, the agglomerative clustering
algorithm combines clusters typically using Ward’s criterion
(Ward, 1963), which finds pairs of clusters that lead to the
smallest increase in the total intra-cluster variance after merging.
The increase is measured by a squared Euclidean distance
metric:

𝑑$+ = 𝐶$ − 𝐶+
. (2)

where Ci represents a cluster with index i.

Fig.1: The architecture of an 
autoencoder [1]. Each circle 
represents a neuron 
corresponding to a data-point. 
Layer L1 represents the input 
data, layer L2 the encoded data 
in latent space, and layer L3 the 
reconstructed data.

7. Magnetotail Data
We use electron data from the magnetotail in order to test the
effectiveness of our method. The magnetotail is traditionally
divided into three different regions: the plasma sheet (PS), the
plasma sheet boundary layer (PSBL), and the lobes. To ensure
that we test our method on a large number of data from each of
the magnetotail regions (>50 000 samples), we obtain Cluster-
PEACE data from times when the C4 spacecraft has spent at
least 1 hour in each region, according to Cluster-ECLAT dataset
[2]. The dimensionality of each of our distribution samples is 312
(12 pitch angle bins x 26 energy bins).

[1] Sakurada, M. and Yairi, T. (2014). doi:10.1145/2689746.2689747.
[2] Boakes, P. D., Nakamura, R., Volwerk, M., and Milan, S. E. (2014). doi:10.1155/2014/684305.



8. Method

Fig.3: Three-dimensional representation of the magnetotail 
data after undergoing dimensionality reduction via an 
autoencoder and PCA algorithm.

Fig.4: 
Histogram 
showing the 
probabilities, 
generated by 
GMMs, that 
the data-
points 
belong to the 
cluster 
assigned to 
them.

9. Evaluation
Fig. 3 shows the result of applying the agglomerative clustering
algorithm to the compressed magnetotail electron. The plot shows
that the clustering algorithm is able to assign data-points of varying
PCA values to the same cluster if they belong to the same complex
non-spherical structure, e.g. clusters 0, 4, and 6. The clustering
algorithm is able to form clear boundaries between clusters with
adjacent PCA values, e.g. between clusters 0, 1, and 7, with no
mixing of cluster labels on either side of the boundaries.

Fig.2: Flow diagram illustrating the 
steps we take to reduce the 
dimensionality of the dataset and 
apply clustering algorithms.



Fig.5: Average electron differential energy flux distributions as a function of pitch angle 
and energy for each of the eight clusters. Each cluster is assigned a magnetotail region 
based on our interpretation of their plasma and magnetic field parameters.

Table 1: Contingency table 
comparing the agglomerative 
clustering (AC) labels of the 
magnetotail electron data to 
the original ECLAT labels (0 
= PS, 1 = PSBL, and 2 = 
lobes).

9. Evaluation (continued)
We use Gaussian mixture models to find
the probabilities of each data-point
belonging to the cluster it has been
assigned to. Fig. 4 shows that >92% of
the data-points have an associated
probability of over 0.9, and <1% of the
data-points have a probability of <0.5.
This indicates a high certainty in our
clustering method.
Fig. 5 shows large differences in the
average pitch angle/energy distributions.
Each distribution differs by the: peak flux
energy, peak flux value, or the pitch
angle anisotropy. The lack of identical
distributions shows mean shift has not
overestimated the number of clusters.

10. Conclusion
In table 1, the majority of clustering labels are in agreement with the
ECLAT regions. For AC labels 0, 1, 2, 4, and 6, which represent
various populations within the plasma sheet, there is 100%
agreement with the ECLAT label 0. By using this method to
characterise pitch angle and energy distributions, instead of using
the derived moments, we successfully distinguish between multiple
populations within what has historically been considered as one
region, due to the lack of variation in the plasma moments as well as
the similarity in spatial location. In a follow up study, we will use the
results from applying this method to link the occurrence of these
populations to other high-resolution spacecraft measurements in
different plasma regions, in order to understand the physical
processes driving changes in the less abundant particle populations.
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